Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The intervertebral discs are large cartilaginous structures situated between the vertebral bodies, occupying around one third of the length of the spinal column. They act as the joints of the spine and carry mechanical load arising from body weight and muscle activity. Loads change with every alteration of posture and activity and the discs thus undergo a diurnal loading pattern with high loads on the discs during the day's activity and low loads on it at night during rest. As the disc is an osmotic system, around 25% of the disc's fluid is expressed and re-imbibed during each diurnal cycle with consequent changes in the osmotic environment of the disc cells. Here, present information on the effect of osmotic changes in disc cell metabolism is reviewed; results indicate that prevailing osmolarity is a powerful regulator of disc cell activity.

Type

Journal article

Journal

Biorheology

Publication Date

2006

Volume

43

Pages

283 - 291

Keywords

Body Fluids, Circadian Rhythm, Humans, Intervertebral Disc, Mechanotransduction, Cellular, Osmolar Concentration, Weight-Bearing