Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ATP-sensitive potassium (KATP) channel in pancreatic β-cells is composed of four pore-forming inward rectifier potassium (Kir) 6.2 subunits and four regulatory sulfonylurea receptor (SUR) 1 subunits and regulate insulin secretion. Kir6.2 consists of a N-terminal region, an outer transmembrane helix (TM1), an intramembrane region that functions as a potassium selectivity filter, an inner transmembrane helix (TM2) that forms a bundle-crossing gate, and a C-terminal cytoplasmic domain. Mutations in the Kir6.2 subunit can cause neonatal diabetes with severe neurological features (DEND syndrome). The DEND syndrome-inducing I167L mutation of Kir6.2 increases the open probability (Po) of the KATP channel. To investigate the gating mechanism impacted by this mutation in Kir6.2 alone, we used C-terminus-truncated Kir6.2 channels to ascertain the impact of I167 mutations on Po in Kir6.2 channels in the absence of SUR1. We found that I167L and I167F mutations showed an increased Po while the Po of other mutations (I167A, I167V) were unchanged when compared to wild-type channels. By mutating residues in TM1 (W68, L72, F75) that may interact with I167, we found that a double mutation of I167L and F75A normalized the Po. These results would suggest that I167 may play an important role in stabilizing the open state of Kir6.2 channels.

Original publication

DOI

10.14814/phy2.70481

Type

Journal article

Journal

Physiol Rep

Publication Date

08/2025

Volume

13

Keywords

KATP channel, Kir6.2, SUR, Potassium Channels, Inwardly Rectifying, Humans, Animals, Ion Channel Gating, Sulfonylurea Receptors, Protein Domains, HEK293 Cells, Mutation