Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: The Gnas transcription unit located within an imprinting region encodes several proteins, including the G-protein alpha-subunit, Gsalpha, its isoform XLalphas and their variant truncated neural forms GsalphaN1 and XLN1. Gsalpha and GsalphaN1 are expressed predominantly from the maternally derived allele in some tissues, whereas XLalphas and XLN1 are expressed exclusively from the paternally derived allele. The relative contribution of full-length Gsalpha and XLalphas, and truncated forms GsalphaN1 and XLN1 to phenotype is unknown. The edematous-small point mutation (Oed-Sml) in exon 6 of Gnas lies downstream of GsalphaN1 and XLN1, but affects full-length Gsalpha and XLalphas, allowing us to address the role of full-length Gsalpha and XLalphas. The aim of this study was therefore to determine the metabolic phenotypes of Oed and Sml mice, and to correlate phenotypes with affected transcripts. METHODS: Mice were fed standard or high-fat diets and weighed regularly. Fat mass was determined by DEXA analysis. Indirect calorimetry was used to measure metabolic rate. Glucose was measured in tolerance tests and biochemical parameters in fasted plasma samples. Histological analysis of fat and liver was carried out post mortem. RESULTS: Oed mice are obese on either diet and have a reduced metabolic rate. Sml mice are lean and are resistant to a high-fat diet and have an increased metabolic rate. CONCLUSION: Adult Oed and Sml mice have opposite metabolic phenotypes. On maternal inheritance, the obese Oed phenotype can be attributed to non-functional full-length Gsalpha. In contrast, on paternal inheritance, Sml mice were small and resistant to the development of obesity on a high-fat diet, effects that can be attributed to mutant XLalphas. Thus, the neural isoforms, GsalphaN1 and XLN1, do not appear to play a role in these metabolic phenotypes.

Original publication

DOI

10.1038/ijo.2009.30

Type

Journal article

Journal

Int J Obes (Lond)

Publication Date

05/2009

Volume

33

Pages

507 - 518

Keywords

Animals, Biomarkers, Body Composition, Chromogranins, Dietary Fats, Disease Models, Animal, Energy Metabolism, GTP-Binding Protein alpha Subunits, GTP-Binding Protein alpha Subunits, Gs, Hyperglycemia, Male, Mice, Mutation, Missense, Obesity, Point Mutation, Protein Isoforms