Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The locally projecting GABAergic interneurons of the mammalian cerebral cortex are a highly heterogeneous population, whose malfunction or deficit has been implicated in a wide range of neurological disorders. However, the low incidence of the various distinct interneuron populations within the neocortex, combined with the lack of molecular or physiological markers specific to these subtypes, have hampered investigations into their function in the normal and dysfunctional brain. A number of research groups have begun to elucidate the developmental genetic mechanism that underpins this diversity in the mouse neocortex, spurred on by the knowledge that the temporal and spatial origin of an interneuron in the embryonic brain is predictive of its eventual intrinsic properties in the mature cortex. In this review we highlight a number of recent findings that strengthen our understanding of the transcription factor code that is at the heart of generating this diversity. Further understanding of this code will enable selective observation, targeting and manipulation of interneuron subtypes across both in vitro and in vivo systems.

Original publication




Journal article


Eur J Neurosci

Publication Date





1542 - 1552


Animals, Brain Mapping, Interneurons, Mice, Neocortex, Spinal Cord, gamma-Aminobutyric Acid