Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Striatal dopamine plays fundamental roles in fine-tuning learned decisions. However, when learning from naive to expert, individuals often exhibit diverse learning trajectories, defying understanding of its underlying dopaminergic mechanisms. Here, we longitudinally measure and manipulate dorsal striatal dopamine signals in mice learning a decision task from naive to expert. Mice learning trajectories transitioned through sequences of strategies, showing substantial individual diversity. Remarkably, the transitions were systematic; each mouse's early strategy determined its strategy weeks later. Dopamine signals reflected strategies each animal transitioned through, encoding a subset of stimulus-choice associations. Optogenetic manipulations selectively updated these associations, leading to learning effects distinct from that of reward. A deep neural network using heterogeneous teaching signals, each updating a subset of network association weights, captured our results. Analyzing the model's fixed points explained learning diversity and systematicity. Altogether, this work provides insights into the biological and mathematical principles underlying individual long-term learning trajectories.

Original publication

DOI

10.1016/j.cell.2025.05.025

Type

Journal article

Journal

Cell

Publication Date

05/06/2025

Keywords

basal ganglia, dopamine, gradient descent, individual variability, long-term learning, neural network, reinforcement learning, reward prediction error, saddle point, striatum