Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The final step in the de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by CTP synthase (CTPS), which can form cytoophidia in all three domains of life. Recently, we have discovered that CTPS binds to ribonucleotides (NTPs) to form filaments, and have successfully resolved the structures of Drosophila melanogaster CTPS bound with NTPs. Previous biochemical studies have shown that CTPS can bind to deoxyribonucleotides (dNTPs) to produce 2'-deoxycytidine-5'-triphosphate (dCTP). However, the structural basis of CTPS binding to dNTPs is still unclear. In this study, we find that Drosophila CTPS can also form filaments with dNTPs. Using cryo-electron microscopy, we are able to resolve the structure of Drosophila melanogaster CTPS bound to dNTPs with a resolution of up to 2.7 Å. By combining these structural findings with biochemical analysis, we compare the binding and reaction characteristics of NTPs and dNTPs with CTPS. Our results indicate that the same enzyme can act bifunctionally as CTP/dCTP synthase in vitro, and provide a structural basis for these activities.

Original publication

DOI

10.1016/j.jmb.2024.168750

Type

Journal article

Journal

J Mol Biol

Publication Date

15/10/2024

Volume

436

Keywords

CTP synthase, CTP/dCTP synthase, cryo-electron microscopy, cytoophidium, filamentation, Animals, Carbon-Nitrogen Ligases, Cryoelectron Microscopy, Cytidine Triphosphate, Deoxycytosine Nucleotides, Drosophila melanogaster, Models, Molecular, Protein Binding, Protein Conformation