Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractMaximal exercise capacity is reduced at altitude or during hypoxia at sea level. It has been suggested that this might reflect increased right ventricular afterload due to hypoxic pulmonary vasoconstriction. We have shown previously that the pulmonary vascular sensitivity to hypoxia is enhanced by sustained isocapnic hypoxia, and inhibited by intravenous iron. In this study, we tested the hypothesis that elevated pulmonary artery pressure contributes to exercise limitation during acute hypoxia. Twelve healthy volunteers performed incremental exercise tests to exhaustion breathing 12% oxygen, before and after sustained (8‐h) isocapnic hypoxia at sea level. Intravenous iron sucrose (n = 6) or saline placebo (n = 6) was administered immediately before the sustained hypoxia. In the placebo group, there was a substantial (12.6 ± 1.5 mmHg) rise in systolic pulmonary artery pressure (SPAP) during sustained hypoxia, but no associated fall in maximal exercise capacity breathing 12% oxygen. In the iron group, the rise in SPAP during sustained hypoxia was markedly reduced (3.4 ± 1.0 mmHg). There was a small rise in maximal exercise capacity following sustained hypoxia within the iron group, but no overall effect of iron, compared with saline. These results do not support the hypothesis that elevated SPAP inhibits maximal exercise capacity during acute hypoxia in healthy volunteers.

Original publication

DOI

10.14814/phy2.15944

Type

Journal article

Journal

Physiological Reports

Publisher

Wiley

Publication Date

02/2024

Volume

12