Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The correlation between spontaneous calcium oscillations (S-CaOs) and arrhythmogenesis has been investigated in a number of theoretical and experimental in vitro models. There is an obvious lack of studies that directly investigate how the kinetics of S-CaOs correlates with a specific arrhythmia in the in vivo heart. OBJECTIVES: The purpose of the study is to investigate the correlation between the kinetics of S-CaOs and arrhythmogenesis in the intact heart using an experimental model of ischemia/reperfusion (I/R). METHODS: Perfused Langendorff guinea pig (GP) hearts were subjected to global I/R (10-15 minutes/10-15 minutes). The heart was stained with a voltage-sensitive dye (RH237) and loaded with a Ca2+ indicator (Rhod-2 AM). Membrane voltage (Vm) and intracellular calcium transient (Ca(i)T) were simultaneously recorded with an optical mapping system of two 16 x 16 photodiode arrays. S-CaOs were considered to arise from a localized focal site within the mapped surface when these preceded the associated membrane depolarizations by 2-15 ms. RESULTS: In 135 episodes of ventricular arrhythmias from 28 different GP experiments, 23 were linked to S-CaOs that were considered to arise from or close to the mapped epicardial window. Self-limited or sustained S-CaOs had a cycle length of 130-430 ms and could trigger propagated ventricular depolarizations. Self-limited S-CaOs that followed the basic beat action potential (AP)/Ca(i)T closely resembled phase 3 early afterdepolarizations. Fast S-CaOs could remain confined to a localized site (concealed) or exhibit varying conduction patterns. This could manifest as (1) an isolated premature beat (PB), bigeminal, or trigeminal rhythm; (2) ventricular tachycardia (VT) when a regular 2:1 conduction from the focal site develops; or (3) ventricular fibrillation (VF) when a complex conduction pattern results in wave break and reentrant excitation. CONCLUSIONS: The study examined, for the first time in the intact heart, the correlation between the kinetics of focal S-CaOs during I/R and arrhythmogenesis. S-CaOs may remain concealed or manifest as PBs, VT, or VF. A "benign looking" PB during I/R may represent "the tip of the iceberg" of an underlying potentially serious arrhythmic mechanism.

Original publication

DOI

10.1016/j.hrthm.2005.09.018

Type

Journal article

Journal

Heart Rhythm

Publication Date

01/2006

Volume

3

Pages

58 - 66

Keywords

Action Potentials, Animals, Arrhythmias, Cardiac, Calcium, Calcium Signaling, Disease Models, Animal, Electrophysiology, Guinea Pigs, Heart Conduction System, Kinetics, Male, Myocardial Reperfusion Injury, Optics and Photonics