Regional cerebral perfusion differences between periventricular grey, thalamic and dual target deep brain stimulation for chronic neuropathic pain.
Pereira EAC., Green AL., Bradley KM., Soper N., Moir L., Stein JF., Aziz TZ.
Regional cerebral blood flow changes were evaluated in different subcortical brain targets following deep brain stimulation (DBS) for chronic pain. Three patients with intractable neuropathic pain were assessed; one had stimulating electrodes in the ventroposterolateral thalamic nucleus (VPL), one in the periventricular grey (PVG) area, and one had electrodes in both targets. Pain relief was achieved in all patients. Cerebral perfusion was measured by single-photon emission computed tomography to determine the effects of DBS. Comparison was made between individual scans using subtraction analysis. DBS consistently increased perfusion in the posterior subcortical region between VPL and PVG, regardless of the site of stimulation. Furthermore, thalamic and dual target DBS increased thalamic perfusion, yet PVG DBS decreased perfusion in the PVG-containing midbrain region and thalamus. Dual target stimulation decreased anterior cingulate and insular cortex perfusion. The study demonstrates regional differences in cerebral perfusion between three accepted and efficacious targets for analgesic DBS.