Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Raman micro-spectroscopy is a laser-based technique which enables rapid and non-invasive biochemical analysis of cells and tissues without the need for labels, markers or stains. Previous characterization of the mammalian cell cycle using Raman micro-spectroscopy involved the analysis of suspensions of viable cells and individual fixed and/or dried cells. Cell suspensions do not provide cell-specific information, and fixing/drying can introduce artefacts which distort Raman spectra, potentially obscuring both qualitative and quantitative analytical results. In this article, we present Raman spectral characterization of biochemical changes related to cell cycle dynamics within single living cells in vitro. Raman spectra of human osteosarcoma cells synchronized in G(0)/G(1), S, and G(2)/M phases of the cell cycle were obtained and multivariate statistics applied to analyze the changes in cell spectra as a function of cell cycle phase. Principal components analysis identified spectral differences between cells in different phases, indicating a decrease in relative cellular lipid contribution to Raman spectral signatures from G(0)/G(1) to G(2)/M, with a concurrent relative increase in signal from nucleic acids and proteins. Supervised linear discriminant analysis of spectra was used to classify cells according to cell cycle phase, and exhibited 97% discrimination between G(0)/G(1)-phase cells and G(2)/M-phase cells. The non-invasive analysis of live cell cycle dynamics with Raman micro-spectroscopy demonstrates the potential of this approach to monitoring biochemical cellular reactions and processes in live cells in the absence of fixatives or labels.

Original publication

DOI

10.1002/jcb.21720

Type

Journal article

Journal

J Cell Biochem

Publication Date

01/07/2008

Volume

104

Pages

1427 - 1438

Keywords

Cell Cycle, Cells, Cytodiagnosis, Diagnostic Imaging, Humans, Interphase, Osteosarcoma, Spectrum Analysis, Raman