Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bioactive glasses (BG) which contain strontium have the potential to combine the known bone regenerative properties of BG with the anabolic and anti-catabolic effects of strontium cations. Here we created a BG series (SiO(2)-P(2)O(5)-Na(2)O-CaO) in which 0-100% of the calcium was substituted by strontium and tested their effects on osteoblasts and osteoclasts in vitro. We show that ions released from strontium-substituted BG enhance metabolic activity in osteoblasts. They also inhibit osteoclast activity by both reducing tartrate resistant acid phosphatase activity and inhibiting resorption of calcium phosphate films in a dose-dependent manner. Additionally, osteoblasts cultured in contact with BG show increased proliferation and alkaline phosphatase activity with increasing strontium substitution, while osteoclasts adopt typical resorption morphologies. These results suggest that similarly to the osteoporosis drug strontium ranelate, strontium-substituted BG may promote an anabolic effect on osteoblasts and an anti-catabolic effect on osteoclasts. These effects, when combined with the advantages of BG such as controlled ion release and delivery versatility, may make strontium-substituted BG an effective biomaterial choice for a range of bone regeneration therapies.

Original publication




Journal article



Publication Date





3949 - 3956


Acid Phosphatase, Alkaline Phosphatase, Animals, Cell Count, Cell Differentiation, Cell Line, Elements, Glass, Humans, Ions, Isoenzymes, Mice, Microscopy, Fluorescence, Organometallic Compounds, Osteoblasts, Osteoclasts, Tartrate-Resistant Acid Phosphatase, Thiophenes