Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The use of materials properties to guide cell behaviour is an attractive option for regenerative medicine, where controlling stem cell behaviour is important for the establishment of a functioning cell population. A wide range of materials properties have been shown to influence many types of cells but little is known about the effects of topography on embryonic stem cells (ESCs). In order to advance this knowledge, we synthesised and characterised substrates formed of silica colloidal crystal (SCC) microspheres to present highly ordered and reproducible topographical features from 120-600 nm in diameter. We found that, compared to cells cultured on flat glass, cells cultured on the SCC substrates retained transcription of stem cell (Dppa5a, Nanog, and Pou5f1) and endoderm (Afp, Gata4, Sox17, and Foxa2) markers more similar to undifferentiated ESCs, suggesting the substrates are restricting differentiation, particularly towards the endoderm lineage. Additionally, five days after seeding, we observed strikingly different colony morphology, with cells on the SCC substrates growing in spherical colonies approximately ten cells thick, while cells on glass were growing in flat monolayers. Colonies on the SCC substrates developed a central pit, which was never observed in cells cultured on glass, and expressed proteins related to epithelialisation. Together, these data demonstrate the potential of using topographical cues to control stem cell behaviour in vitro.

Original publication

DOI

10.22203/ecm.v023a10

Type

Journal article

Journal

Eur Cell Mater

Publication Date

23/02/2012

Volume

23

Pages

135 - 146

Keywords

Antigens, Differentiation, Biocompatible Materials, Cell Differentiation, Cell Survival, Cells, Cultured, Colloids, Crystallization, Embryonic Stem Cells, Endoderm, Gene Expression, Microspheres, Silicon Dioxide, Tissue Engineering