Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Enzymes are key components of the bionanotechnology toolbox that possess exceptional biorecognition capabilities and outstanding catalytic properties. When combined with the unique physical properties of nanomaterials, the resulting enzyme-responsive nanoparticles can be designed to perform functions efficiently and with high specificity for the triggering stimulus. This powerful concept has been successfully applied to the fabrication of drug delivery schemes where the tissue of interest is targeted via release of cargo triggered by the biocatalytic action of an enzyme. Moreover, the chemical transformation of the carrier by the enzyme can also generate therapeutic molecules, therefore paving the way to design multimodal nanomedicines with synergistic effects. Dysregulation of enzymatic activity has been observed in a number of severe pathological conditions, and this observation is useful not only to program drug delivery in vivo but also to fabricate ultrasensitive sensors for diagnosing these diseases. In this review, several enzyme-responsive nanomaterials such as polymer-based nanoparticles, liposomes, gold nanoparticles and quantum dots are introduced, and the modulation of their physicochemical properties by enzymatic activity emphasized. When known, toxicological issues related to the utilization nanomaterials are highlighted. Key examples of enzyme-responsive nanomaterials for drug delivery and diagnostics are presented, classified by the type of effector biomolecule, including hydrolases such as proteases, lipases and glycosidases, and oxidoreductases.

Original publication

DOI

10.1016/j.addr.2012.01.002

Type

Journal article

Journal

Adv Drug Deliv Rev

Publication Date

08/2012

Volume

64

Pages

967 - 978

Keywords

Diagnostic Imaging, Drug Delivery Systems, Hydrolases, Nanoparticles, Pharmaceutical Preparations