Layer-by-Layer Self-Assembly of Polymer Films and Capsules through Coiled-Coil Peptides
Gormley AJ., Chandrawati R., Christofferson AJ., Loynachan C., Jumeaux C., Artzy-Schnirman A., Aili D., Yarovsky I., Stevens MM.
The layer-by-layer (LbL) technique is a simple and robust process for fabricating functional multilayer thin films. Here, we report the use of de novo designed polypeptides that self-assemble into coiled-coil structures (four-helix bundles) as a driving force for specific multilayer assembly. These pH- (sensitive between pH 4 and 7) and enzyme-responsive polypeptides were conjugated to polymers, and the LbL assembly of the polymer-peptide conjugates allowed the deposition of up to four polymer-peptide layers on planar surfaces and colloidal substrates. Stable hollow capsules were obtained, and by taking advantage of the peptide's susceptibility to specific enzymatic cleavage, release of encapsulated cargo within the carriers can be triggered within 2 h in the presence of matrix metalloproteinase-7. The enormous diversity of materials that can form highly controllable and programmable coiled-coil interactions creates new opportunities and allows further exploration of the multilayer assembly and the formation of carrier capsules with unique functional properties. (Figure Presented).