Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Metal assisted chemical etch has recently come to prominence as a versatile strategy for the realization of silicon nanostructures with tailored porosity. By exploiting metal assisted chemical etch, we recently developed porous silicon nanoneedles capable of interfacing with cells for delivery to and sensing of the intracellular milieu. Here we review our recently published studies on the fabrication of such nanostructures. Further we review their use as vectors for the localized delivery nucleic acids capable of inducing neovasculature formation in a mouse model. Finally we provide an overview of our findings on the use of porous silicon nanoneedles as intracellular sensors for detection of enzymatic activity with high resolution across excised human tissue samples.

Original publication

DOI

10.1149/06902.0063ecst

Type

Journal article

Journal

ECS Transactions

Publication Date

01/01/2015

Volume

69

Pages

63 - 68