Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

HIV-1 protease is a key enzyme in the life cycle of HIV/AIDS, as it is responsible for the formation of the mature virus particle. We demonstrate here that phage-display peptides raised against this enzyme can be used as peptide sensors for the detection of HIV-1 protease in a simple, one-pot assay. The presence of the enzyme is detected through an energy transfer between two peptide sensors when simultaneously complexed with the target protein. The multivalent nature of this assay increases the specificity of the detection by requiring all molecules to be interacting in order for there to be a FRET signal. We also perform molecular dynamics simulations to explore the interaction between the protease and the peptides in order to guide the design of these peptide sensors and to understand the mechanisms which cause these simultaneous binding events. This approach aims to facilitate the development of new assays for enzymes that are not dependent on the cleavage of a substrate and do not require multiple washing steps.

Original publication

DOI

10.1021/acs.chemmater.5b03651

Type

Journal article

Journal

Chem Mater

Publication Date

06/10/2015

Volume

27

Pages

7187 - 7195