Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bioglass® was the first synthetic material capable of bonding with bone without fibrous encapsulation, and fulfils some of the criteria of an ideal synthetic bone graft. However, it is brittle and toughness is required. Here, we investigated hybrids consisting of co-networks of high cross-linking density polymethacrylate and silica (class II hybrid) as a potential new generation of scaffold materials. Poly(3-(methoxysilyl)propyl methacrylate) (pTMSPMA) and tetraethyl orthosilicate (TEOS) were used as sol-gel precursors and hybrids were synthesised with different inorganic to organic ratios (Ih). The hybrids were nanoporous, with a modal pore diameter of 1 nm. At Ih = 50%, the release of silica was controlled by varying the molecular weight of pTMSPMA while retaining a specific surface area above 100 m2 g-1. Strain to failure increased to 14.2%, for Ih = 50% using a polymer of 30 kDa, compared to 4.5% for pure glass. The modulus of toughness (UT) increased from 0.73 (pure glass) to 2.64 GPa. Although, the hybrid synthesised in this report did not contain calcium, pTMSPMA/SiO2 hybrid was found to nucleate bone-like mineral on its surface after 1 week of immersion in simulated body fluid (SBF), whereas pure silica sol-gel glass did not. This increase in apatite forming ability was due to the ion-dipole complexation of calcium with the ester moieties of the polymer that were exposed after release of soluble silica from TEOS. No adverse cytotoxicity for MC3T3-E1 osteoblast-like cells was detected and improved cell attachment was observed, compared to a pure silica gel. pTMSPMA/SiO2 hybrids have potential for the regeneration of hard tissue as they overcome the major drawbacks of pure inorganic substrates while retaining cell attachment.

Original publication

DOI

10.1039/c6tb00968a

Type

Journal article

Journal

J Mater Chem B

Publication Date

28/09/2016

Volume

4

Pages

6032 - 6042