Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The components of bone assemble hierarchically to provide stiffness and toughness. However, the organization and relationship between bone's principal components-mineral and collagen-has not been clearly elucidated. Using three-dimensional electron tomography imaging and high-resolution two-dimensional electron microscopy, we demonstrate that bone mineral is hierarchically assembled beginning at the nanoscale: Needle-shaped mineral units merge laterally to form platelets, and these are further organized into stacks of roughly parallel platelets. These stacks coalesce into aggregates that exceed the lateral dimensions of the collagen fibrils and span adjacent fibrils as continuous, cross-fibrillar mineralization. On the basis of these observations, we present a structural model of hierarchy and continuity for the mineral phase, which contributes to the structural integrity of bone.

Original publication

DOI

10.1126/science.aao2189

Type

Journal article

Journal

Science

Publication Date

04/05/2018

Volume

360

Keywords

Bone Density, Bone Substitutes, Bone and Bones, Calcification, Physiologic, Electron Microscope Tomography, Humans, Microscopy, Electron, Transmission, Nanostructures