Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Inorganic-organic hybrid biomaterials made with star polymer poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) and silica, which show promising mechanical properties, are 3D printed as bone substitutes for the first time, by direct ink writing of the sol. Three different inorganic:organic ratios of poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate)-star-SiO2 hybrid inks are printed with pore channels in the range of 100-200 µm. Mechanical properties of the 3D printed scaffolds fall within the range of trabecular bone, and MC3T3 pre-osteoblast cells are able to adhere to the scaffolds in vitro, regardless of their compositions. Osteogenic and angiogenic properties of the hybrid scaffolds are shown using a rat calvarial defect model. Hybrid scaffolds with 40:60 inorganic:organic composition are able to instigate new vascularized bone formation within its pore channels and polarize macrophages toward M2 phenotype. 3D printing inorganic-organic hybrids with sophisticated polymer structure opens up possibilities to produce novel bone graft materials.

Original publication

DOI

10.1002/adhm.202100117

Type

Journal article

Journal

Adv Healthc Mater

Publication Date

06/2021

Volume

10

Keywords

3D printing, biomaterials, bone substitutes, hybrids, sol-gels, Animals, Bone Regeneration, Methacrylates, Porosity, Printing, Three-Dimensional, Rats, Silicon Dioxide, Tissue Scaffolds