Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Novel methods for introducing chemical and biological functionality to the surface of gold nanoparticles serve to increase the utility of this class of nanomaterials across a range of applications. To date, methods for functionalising gold surfaces have relied upon uncontrollable non-specific adsorption, bespoke chemical linkers, or non-generalisable protein-protein interactions. Herein we report a versatile method for introducing functionality to gold nanoparticles by exploiting the strong interaction between chemically functionalised bovine serum albumin (f-BSA) and citrate-capped gold nanoparticles (AuNPs). We establish the generalisability of the method by introducing a variety of functionalities to gold nanoparticles using cheap, commercially available chemical linkers. The utility of this approach is further demonstrated through the conjugation of the monoclonal antibody Ontruzant to f-BSA-AuNPs using inverse electron-demand Diels-Alder (iEDDA) click chemistry, a hitherto unexplored chemistry for AuNP-IgG conjugation. Finally, we show that the AuNP-Ontruzant particles generated via f-BSA-AuNPs have a greater affinity for their target in a lateral flow format when compared to conventional physisorption, highlighting the potential of this technology for producing sensitive diagnostic tests.

Original publication

DOI

10.1039/d1nr02584h

Type

Journal article

Journal

Nanoscale

Publication Date

15/07/2021

Volume

13

Pages

11921 - 11931

Keywords

Adsorption, Citric Acid, Gold, Metal Nanoparticles, Serum Albumin, Bovine