Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Perceptual decisions are complete when a continuously updated score of sensory evidence reaches a threshold. In Drosophila, αβ core Kenyon cells (αβc KCs) of the mushroom bodies integrate odor-evoked synaptic inputs to spike threshold at rates that parallel the speed of olfactory choices. Here we perform a causal test of the idea that the biophysical process of synaptic integration underlies the psychophysical process of bounded evidence accumulation in this system. Injections of single brief, EPSP-like depolarizations into the dendrites of αβc KCs during odor discrimination, using closed-loop control of a targeted opsin, accelerate decision times at a marginal cost of accuracy. Model comparisons favor a mechanism of temporal integration over extrema detection and suggest that the optogenetically evoked quanta are added to a growing total of sensory evidence, effectively lowering the decision bound. The subthreshold voltage dynamics of αβc KCs thus form an accumulator memory for sequential samples of information.

Original publication

DOI

10.1038/s41467-023-38487-5

Type

Journal article

Journal

Nat Commun

Publication Date

13/05/2023

Volume

14

Keywords

Animals, Smell, Odorants, Drosophila, Mushroom Bodies