Enhanced reading abilities is modulated by faster visual spatial attention.
Ebrahimi L., Pouretemad H., Stein J., Alizadeh E., Khatibi A.
Research has shown improved reading following visual magnocellular training in individuals with dyslexia. Many studies have demonstrated how the magnocellular pathway controls visual spatial attention. Therefore, we have investigated the relationship between magnocellular pathway and visual spatial attention deficits in dyslexia in order to better understand how magnocellular-based interventions may help children to learn to read. Magnocellular function, visual spatial attention, and reading abilities of thirty elementary school students with dyslexia, aged between 8 and 10, were measured. The experimental group received magnocellular-based visual motion training for 12 sessions, while the control group received neutral sessions. All tests were repeated at the end of the training and after 1 month. The magnocellular functioning, visual spatial attention, and reading abilities of the experimental group improved significantly compared to the controls. Additionally, improvement in reaction time of invalid conditions predicted improvements in saccadic eye movements. We conclude that visual magnocellular training improved saccadic eye movement control, visual spatial orientation, and reading ability.