Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractPrimary sensory cortex has long been believed to play a straightforward role in the initial processing of sensory information. Yet, the superficial layers of cortex overall are sparsely active, even during sensory stimulation; additionally, cortical activity is influenced by other modalities, task context, reward, and behavioral state. Our study demonstrates that reinforcement learning dramatically alters representations among longitudinally imaged neurons in superficial layers of mouse primary somatosensory cortex. Learning an object detection task recruits previously unresponsive neurons, enlarging the neuronal population sensitive to touch and behavioral choice. Cortical responses decrease upon repeated stimulus presentation outside of the behavioral task. Moreover, training improves population encoding of the passage of time, and unexpected deviations in trial timing elicit even stronger responses than touches do. In conclusion, the superficial layers of sensory cortex exhibit a high degree of learning-dependent plasticity and are strongly modulated by non-sensory but behaviorally-relevant features, such as timing and surprise.

Original publication




Journal article


Nature Communications


Springer Science and Business Media LLC

Publication Date