Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

How neurons encode information has been a hotly debated issue. Ultimately, any code must be relevant to the senders, receivers, and connections between them. This review focuses on the transmission of sensory information through the circuit linking thalamus and cortex, two distant brain regions. Strong feedforward inhibition in the thalamocortical circuit renders cortex highly sensitive to the thalamic synchrony evoked by a sensory stimulus. Neuromodulators and feedback connections may modulate the temporal sensitivity of such circuits and gate the propagation of synchrony into other layers and cortical areas. The prevalence of strong feedforward inhibitory circuits throughout the central nervous system suggests that synchrony codes and timing-sensitive circuits may be widespread, occurring well beyond sensory thalamus and cortex.

Original publication




Journal article


Curr Opin Neurobiol

Publication Date





701 - 708


Animals, Cerebral Cortex, Feedback, Physiological, Humans, Models, Neurological, Neural Pathways, Neurons, Sensation, Thalamus