Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

High altitude (HA) exposure may stimulate significant physiological and molecular changes, resulting in HA-related illnesses. HA may impact oxidative stress, antioxidant capacity and iron homeostasis, yet it is unclear how both repeated exposure and HA acclimatization may modulate such effects. Therefore, we assessed the effects of weeklong repeated daily HA exposure (2,900m to 5,050m) in altitude-naïve individuals (n=21, 13 females, mean ± SD, 25.3 ± 3.7 years) to mirror the working schedule of HA workers (n=19, all males, 40.1 ± 2.1 years) at the Atacama Large Millimeter Array (ALMA) Observatory (San Pedro de Atacama, Chile). Markers of oxidative stress, antioxidant capacity and iron homeostasis were measured in blood plasma. Levels of protein oxidation (p<0.001) and catalase activity (p=0.023) increased and serum iron (p<0.001), serum ferritin (p<0.001) and transferrin saturation (p<0.001) levels decreased with HA exposure in both groups. HA workers had lower levels of oxidative stress, and higher levels of antioxidant capacity, iron supply and hemoglobin concentration as compared to altitude-naïve individuals. Upon a second week of daily HA exposure, changes in levels of protein oxidation, glutathione peroxidase and nitric oxide metabolites were lower as compared to the first week in altitude-naïve individuals. These results indicate that repeated exposure to HA may significantly alter oxidative stress and iron homeostasis, and the degree of such changes may be dependent on if HA is visited naïvely or routinely. Further studies are required to fully elucidate differences in HA-induced changes in oxidative stress and iron homeostasis profiles amongst visitors of HA.

Original publication

DOI

10.1152/ajpregu.00321.2021

Type

Journal article

Journal

Am J Physiol Regul Integr Comp Physiol

Publication Date

08/08/2022

Keywords

antioxidant capacity, high altitude, iron supply, oxidative stress