Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The epicardium, the outermost tissue layer that envelops the developing heart and provides essential trophic signals for the myocardium, derives from the pro-epicardial organ (PEO). Two of the three members of the Flrt family of transmembrane glycoproteins, Flrt2 and Flrt3, are strongly co-expressed in the PEO. However, beginning at around day 10 of mouse development, following attachment and outgrowth, Flrt3 is selectively downregulated, and only Flrt2 is exclusively expressed in the fully delaminated epicardium. The present gene-targeting experiments demonstrate that mouse embryos lacking Flrt2 expression arrest at mid-gestation owing to cardiac insufficiency. The defects in integrity of the epicardial sheet and disturbed organization of the underlying basement membrane closely resemble those described in Flrt3-deficient embryos that fail to maintain cell-cell contacts in the anterior visceral endoderm (AVE) signalling centre that normally establishes the A-P axis. Using in vitro and in vivo reconstitution assays, we demonstrate that Flrt2 and Flrt3 are functionally interchangeable. When acting alone, either of these proteins is sufficient to rescue functional activities in the AVE and the developing epicardium.

Original publication

DOI

10.1242/dev.059386

Type

Journal article

Journal

Development

Publication Date

04/2011

Volume

138

Pages

1297 - 1308

Keywords

Animals, Blotting, Western, Cell Line, Cell Movement, Gene Expression Regulation, Developmental, Heart, Membrane Glycoproteins, Mice, Mice, Knockout, Organogenesis, Pericardium, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction