Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Personalized medicine or individualized therapy promises a paradigm shift in healthcare. This is particularly true in complex and multifactorial diseases such as diabetes and the multitude of related pathophysiological complications. Diabetic cardiomyopathy represents an emerging condition that could be effectively treated if better diagnostic and, in particular, better therapeutic monitoring tools were available. In this study, we investigate the ability to differentiate low and high doses of metabolically targeted therapy in an obese type 2 diabetic rat model. Low-dose dichloroacetate (DCA) treatment was associated with increased lactate production, while no or little change was seen in bicarbonate production. High-dose DCA treatment was associated with a significant metabolic switch towards increased bicarbonate production. These findings support further studies using hyperpolarized [1-13 C]-pyruvate magnetic resonance imaging to differentiate treatment effects and thus allow for personalized titration of therapeutics.

Original publication




Journal article


NMR Biomed

Publication Date





DCA, MRI, T2DM, ZDF, heart, hyperpolarization, Acetates, Animals, Bicarbonates, Diabetes Mellitus, Type 2, Dichloroacetic Acid, Heart, Magnetic Resonance Imaging, Pyruvic Acid, Rats