Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Previous psychophysical studies have identified a hierarchy of time-averaged statistics which determine the identity of natural sound textures. However, it is unclear whether the neurons in the inferior colliculus (IC) are sensitive to each of these statistical features in the natural sound textures. We used 13 representative sound textures spanning the space of 3 statistics extracted from over 200 natural textures. The synthetic textures were generated by incorporating the statistical features in a step-by-step manner, in which a particular statistical feature was changed while the other statistical features remain unchanged. The extracellular activity in response to the synthetic texture stimuli was recorded in the IC of anesthetized rats. Analysis of the transient and sustained multiunit activity after each transition of statistical feature showed that the IC units were sensitive to the changes of all types of statistics, although to a varying extent. For example, we found that more neurons were sensitive to the changes in variance than that in the modulation correlations. Our results suggest that the sensitivity of the statistical features in the subcortical levels contributes to the identification and discrimination of natural sound textures.

Original publication

DOI

10.1016/j.heares.2021.108357

Type

Journal article

Journal

Hear Res

Publication Date

14/10/2021

Volume

412

Keywords

Inferior colliculus, Sound texture, Time-averaged statistics