Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

There is currently a debate about the evolutionary origin of the earliest generated cortical preplate neurons and their derivatives (subplate and marginal zone). We examined the subplate with murine markers including nuclear receptor related 1 (Nurr1), monooxygenase Dbh-like 1 (Moxd1), transmembrane protein 163 (Tmem163), and connective tissue growth factor (Ctgf) in developing and adult turtle, chick, opossum, mouse, and rat. Whereas some of these are expressed in dorsal pallium in all species studied (Nurr1, Ctgf, and Tmem163), we observed that the closely related mouse and rat differed in the expression patterns of several others (Dopa decarboxylase, Moxd1, and thyrotropin-releasing hormone). The expression of Ctgf, Moxd1, and Nurr1 in the oppossum suggests a more dispersed subplate population in this marsupial compared with mice and rats. In embryonic and adult chick brains, our selected subplate markers are primarily expressed in the hyperpallium and in the turtle in the main cell dense layer of the dorsal cortex. These observations suggest that some neurons that express these selected markers were present in the common ancestor of sauropsids and mammals.

Original publication

DOI

10.1093/cercor/bhq278

Type

Journal article

Journal

Cereb Cortex

Publication Date

10/2011

Volume

21

Pages

2187 - 2203

Keywords

Age Factors, Animals, Animals, Newborn, Cerebral Cortex, Chick Embryo, Evolution, Molecular, Gene Expression Regulation, Developmental, Humans, Mice, Mice, Inbred C57BL, Opossums, Rats, Rats, Wistar, Species Specificity, Turtles