Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have investigated the effect of the local activation of histamine H3 receptors (H3Rs) in the rat prefrontal cortex (PFCx) on the impairment of pre-pulse inhibition (PPI) of the startle response induced by the systemic administration of MK-801, antagonist at glutamate N-Methyl-d-Aspartate (NMDA) receptors, and the possible functional interaction between H3Rs and MK-801 on PFCx dopaminergic transmission. Infusion of the H3R agonist RAMH (19.8 ng/1 μl) into the PFCx reduced or prevented the inhibition by MK-801 (0.15 mg/kg, ip) of PPI evoked by different auditory stimulus intensities (5, 10 and 15 dB), and the RAMH effect was blocked by the H3R antagonist/inverse agonist ciproxifan (30.6 ng/1 μl). MK-801 inhibited [3H]-dopamine uptake (-45.4 ± 2.1%) and release (-32.8 ± 2.6%) in PFCx synaptosomes or slices, respectively, and molecular modeling indicated that MK-801 binds to and blocks the rat and human dopamine transporters. However, H3R activation had no effect on the inhibitory action of MK-801 on dopamine uptake and release. In PFCx slices, MK-801 and the activation of H3Rs or dopamine D1 receptors (D1Rs) stimulated ERK-1/2 and Akt phosphorylation. The co-activation of D1Rs and H3Rs prevented ERK-1/2 and Akt phosphorylation, and H3R activation or D1R blockade prevented the effect of MK-801. In ex vivo experiments, the intracortical infusion of the D1R agonist SKF-81297 (37 ng/1 μl) or the H3R agonist RAMH increased Akt phosphorylation, prevented by D1R/H3R co-activation. These results indicate that MK-801 enhances dopaminergic transmission in the PFCx, and that H3R activation counteracts the post-synaptic actions of dopamine.

Original publication

DOI

10.1016/j.pnpbp.2019.109653

Type

Journal article

Journal

Prog Neuropsychopharmacol Biol Psychiatry

Publication Date

30/08/2019

Volume

94

Keywords

Dopamine, Histamine, Histamine H(3) receptor, MK-801, Prefrontal cortex, Schizophrenia, Animals, Benzazepines, Dizocilpine Maleate, Dopamine, Dopamine Plasma Membrane Transport Proteins, Excitatory Amino Acid Antagonists, Histamine Agonists, Imidazoles, Male, Microinjections, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Molecular Docking Simulation, Phosphorylation, Prefrontal Cortex, Prepulse Inhibition, Proto-Oncogene Proteins c-akt, Rats, Receptors, Histamine H3, Receptors, N-Methyl-D-Aspartate, Reflex, Startle, Tritium