Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Survival motor neuron protein (SMN) is the determining factor for the human neurodegenerative disease spinal muscular atrophy (SMA). SMN is critical for small nuclear ribonucleoprotein (snRNP) assembly. Using Drosophila oogenesis as a model system, we show that mutations in smn cause abnormal nuclear organization in nurse cells and oocytes. Germline and mitotic clonal analysis reveals that both nurse cells and oocytes require SMN to maintain normal organization of nuclear compartments including chromosomes, nucleoli, Cajal bodies and histone locus bodies. We previously found that SMN-containing U bodies invariably associate with P bodies (Liu, J. L., and Gall, J. G. (2007). U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc. Natl. Acad. Sci. U. S. A. 104, 11655-11659.). Multiple lines of evidence implicate SMN in the regulation of germline nuclear organization through the connection of U bodies and P bodies. Firstly, smn germline clones phenocopy mutations for two P body components, Cup and Ovarian tumour (Otu). Secondly, P body mutations disrupt SMN distribution and the organization of U bodies. Finally, mutations in smn disrupt the function and organization of U bodies and P bodies. Taken together, our results suggest that SMN is required for the functional integrity of the U body-P body pathway, which in turn is important for maintaining proper nuclear architecture.

Original publication

DOI

10.1016/j.ydbio.2009.05.553

Type

Journal article

Journal

Dev Biol

Publication Date

01/08/2009

Volume

332

Pages

142 - 155

Keywords

Animals, Cell Nucleolus, Cell Nucleus, Clone Cells, Coiled Bodies, Cytoplasmic Structures, Drosophila Proteins, Drosophila melanogaster, Germ Cells, Heterochromatin, Histones, Mitosis, Models, Biological, Muscular Atrophy, Spinal, Mutation, Oocytes, Protein Transport, RNA, Small Nuclear, RNA-Binding Proteins