Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microfluorimetric and patch-clamp techniques have been combined to determine the relationship between changes in mitochondrial metabolism, the activity of KATP channels and changes in intracellular free calcium concentration ([Ca2+]i) in isolated pancreatic beta-cells in response to glucose, ketoisocaproic acid (KIC) and the electron donor couple tetramethyl p-phenylenediamine (TMPD) and ascorbate. Exposure of cells to 20 mM glucose raised NAD(P)H autofluorescence after a delay of 28 +/- 1 s (mean +/- S.E.M., n = 30). The mitochondrial inner membrane potential, delta psi m (monitored using rhodamine 123 fluorescence), hyperpolarized with a latency of 49 +/- 6 s (n = 17), and the [Ca2+]i rose after 129 +/- 13 s (n = 5). The amplitudes of the metabolic changes were graded appropriately with glucose concentration over the range 2.5-20 mM. All variables responded to KIC with shorter latencies: NAD(P)H autofluorescence rose after a delay of 20 +/- 3 s (n = 5) and rhodamine 123 changed after 21 +/- 3 s (n = 6). The electron donor couple, TMPD with ascorbate, rapidly hyperpolarized delta psi m and raised [Ca2+]i. When [Ca2+]i was raised by sustained exposure to 20 mM glucose, TMPD had no further effect. TMPD also decreased whole-cell KATP currents and depolarized the cell membrane, measured with the perforated patch configuration. These data are consistent with a central role for mitochondrial oxidative phosphorylation in coupling changes in glucose concentration with the secretion of insulin.

Original publication




Journal article


Biochem J

Publication Date



294 ( Pt 1)


35 - 42


Animals, Ascorbic Acid, Binding Sites, Calcium, Glucose, In Vitro Techniques, Islets of Langerhans, Male, Membrane Potentials, Mice, Mice, Inbred BALB C, Mitochondria, NAD, Potassium Channels, Spectrometry, Fluorescence, Tetramethylphenylenediamine