Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this study, epididymal adipose tissue from male annexin 1 (ANXA1)-null and wild-type control mice were used to explore the potential role of ANXA1 in adipocyte biology. ANXA1 was detected by Western blot analysis in wild-type tissue and localized predominantly to the stromal-vascular compartment. Epididymal fat pad mass was reduced by ANXA1 gene deletion, but adipocyte size was unchanged, suggesting that ANXA1 is required for the maintenance of adipocyte and/or preadipocyte cell number. Epididymal tissue from wild-type mice responded in vitro to noradrenaline and isoprenaline with increased glycerol release, reduced IL-6 release, and increased cAMP accumulation. Qualitatively similar but significantly attenuated responses to the catecholamines were observed in tissue from ANXA1-null mice, an effect that was not associated with changes in beta-adrenoceptor mRNA expression. Lipopolysaccharide (LPS) also stimulated lipolysis in vitro, but its effects were muted by ANXA1 gene deletion. By contrast, LPS failed to influence IL-6 release from wild-type tissue but stimulated the release of the cytokine from tissue from ANXA1-null mice. ANXA1 gene deletion did not affect glucocorticoid receptor expression or the ability of dexamethasone to suppress catecholamine-induced lipolysis. It did, however, augment IL-6 expression and modify the inhibitory effects of glucocorticoids on IL-6 release. Collectively, these studies suggest that ANXA1 supports aspects of adipose tissue mass and alters the sensitivity of epididymal adipose tissue to catecholamines, glucocorticoids, and LPS, thereby modulating lipolysis and IL-6 release.

Original publication




Journal article


Am J Physiol Endocrinol Metab

Publication Date





E1264 - E1273


Adipocytes, Adipose Tissue, Adrenergic beta-Agonists, Animals, Annexin A1, Blotting, Western, Body Weight, Catecholamines, Cell Separation, Cell Size, Cyclic AMP, Dexamethasone, Electrophoresis, Polyacrylamide Gel, Epididymis, Gene Deletion, Interleukin-6, Isoproterenol, Lipolysis, Lipopolysaccharides, Male, Mice, Mice, Knockout, Muscle, Smooth, Vascular, Organ Size, Reverse Transcriptase Polymerase Chain Reaction, Stromal Cells