Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To examine the effect of O(2) and the role, and source, of reactive oxygen species (ROS) on pH regulation in articular chondrocytes. METHODS: Cartilage from equine metacarpo/tarsophalangeal joints was digested (collagenase) to isolate chondrocytes and loaded with 2',7'-bis-2-(carboxyethyl)-5(6)-carboxylfluorescein, a pH-sensitive fluorophore. O(2) tension was maintained using Eschweiler tonometers and a Wosthoff gas mixer. Cells were exposed to agents which alter ROS levels, mitochondrial inhibitors and/or inhibitors of protein phosphorylation. ROS levels were determined by dichlorofluorescein and mitochondrial membrane potential measured using JC-1. RESULTS: pH homeostasis was dependent on ROS. Na(+)/H(+) exchanger (NHE) activity was inhibited at low O(2) tension (acid efflux reducing from 2.30+/-0.05 to 1.27+/-0.11mMmin(-1) at 1%). NHE activity correlated with ROS levels (r(2)=0.65). ROS levels were increased by antimycin A (with levels at 1% O(2) tension increasing from 59+/-9% of the value at 20% to 87+/-7%), but reduced by rotenone, myxothiazol and diphenyleneiodonium. Hypoxia induced depolarisation of the mitochondrial membrane potential (with JC-1 red-green fluorescence ratio at 1% O(2) tension decreasing to 40+/-10% of the value at 20%). The response to changes in O(2) and to antimycin A was inhibited by staurosporine, wortmanin and calyculin A. CONCLUSION: The fall in ROS levels in hypoxia reduces the ability of articular chondrocytes to regulate pH, inhibiting NHE activity via changes in protein phosphorylation. The site of ROS generation is likely to be mitochondrial electron transport chain complex III. These effects are important to understanding normal chondrocyte function and response to altered O(2) tension.

Original publication

DOI

10.1016/j.joca.2007.01.008

Type

Journal article

Journal

Osteoarthritis Cartilage

Publication Date

07/2007

Volume

15

Pages

735 - 742

Keywords

Animals, Cartilage, Articular, Chondrocytes, Homeostasis, Horses, Hydrogen-Ion Concentration, Mitochondria, Oxygen, Reactive Oxygen Species, Sodium-Hydrogen Exchangers