Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Relatively little is known about the interneurons that constitute the mammalian locomotor central pattern generator and how they interact to produce behavior. A potential avenue of research is to identify genetic markers specific to interneuron populations that will assist further exploration of the role of these cells in the network. One such marker is the EphA4 axon guidance receptor. EphA4-null mice display an abnormal rabbit-like hopping gait that is thought to be the result of synchronization of the normally alternating, bilateral locomotor network via aberrant crossed connections. In this study, we have performed whole-cell patch clamp on EphA4-positive interneurons in the flexor region (L2) of the locomotor network. We provide evidence that although EphA4 positive interneurons are not entirely a homogeneous population, most of them fire in a rhythmic manner. Moreover, a subset of these interneurons provide direct excitation to ipsilateral motor neurons as determined by spike-triggered averaging of the local ventral root DC trace. Our findings substantiate the role of EphA4-positive interneurons as significant components of the ipsilateral locomotor network and describe a group of putative excitatory central pattern generator neurons.

Original publication

DOI

10.1073/pnas.0503317102

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

27/09/2005

Volume

102

Pages

14098 - 14103

Keywords

Animals, Biomarkers, Interneurons, Mice, Motor Activity, Patch-Clamp Techniques, Receptor, EphA4, Synapses