Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The existence of stem cells in the adult nervous system is well recognized; however, the potential of these cells is still widely debated. We demonstrate that neural stem cells exist within the embryonic and adult cerebellum. Comparing the potential of neural stem cells derived from the forebrain and cerebellum, we find that progeny derived from each of these brain regions retain regional character in vitro as well as after homotopic transplantation. However, when ectopically transplanted, neurosphere-derived cells from either region are largely unable to generate neurons. With regard specifically to embryonic and adult cerebellar stem cells, we observe that they are able to give rise to neurons that resemble different select classes of cerebellar subclasses when grafted into the perinatal host cerebellum. Most notably, upon transplantation to the perinatal cerebellum, cerebellar stem cells from all ages are able to acquire the position and mature electrophysiological properties of cerebellar granule cells.

Original publication

DOI

10.1242/dev.02037

Type

Journal article

Journal

Development

Publication Date

10/2005

Volume

132

Pages

4497 - 4508

Keywords

Aging, Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Lineage, Cerebellum, Genes, Reporter, Mice, Multipotent Stem Cells, Neurons, Phenotype, Prosencephalon, Tissue Culture Techniques