Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Matrix synthesis by articular chondrocytes is sensitive to changes in intracellular pH (pH(i)), so characterising the membrane transport pathways that determine pH(i) is important for understanding how chondrocytes regulate the turnover of cartilage matrix. In the present study, the whole-cell patch-clamp technique has been employed to demonstrate the operation of voltage-activated H(+) channels (VAHC) in bovine articular chondrocytes. Using solutions designed to minimise the contribution of ions other than H(+), the application of step voltage-protocols elicited whole-cell currents. These currents were slow activating, observed only in the outward direction, dependent on both extracellular pH (pH(o)) and pH(i), and inhibited by Zn(2+). The reversal potential values, measured by tail current analysis, over a range of different pHo and pHi values, were in good agreement with predicted values for membrane channels having a high selectivity for protons. The results presented here are consistent with the operation of VAHC in articular chondrocytes.

Original publication

DOI

10.1159/000095171

Type

Journal article

Journal

Cell Physiol Biochem

Publication Date

2006

Volume

18

Pages

85 - 90

Keywords

Animals, Cartilage, Articular, Cattle, Chondrocytes, Electrophysiology, Hydrogen-Ion Concentration, Ion Channel Gating, Ion Channels, Membrane Potentials, Patch-Clamp Techniques, Zinc