Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Previous work has shown that interleukin 1 (IL-1) increases the activity of acid extruders in articular chondrocytes, while the H+-adenosine triphosphatase (ATPase) inhibitor bafilomycin can prevent aggrecanase-mediated cartilage degradation. The H+ transport induced by IL-1 may therefore be required for proteinase activity. In the present study, the effects of hexosamines and fish oils on H+-ATPase activity have been characterised for isolated bovine articular chondrocytes. Cells isolated in the presence of IL-1 were acidified, and the fraction of acid extrusion mediated by Na+-H+ exchange and an H+-ATPase were determined using specific inhibitors. Exposure to IL-1 significantly enhanced both components of acid extrusion. Co-incubation with glucosamine or mannosamine attenuated the H+-ATPase fraction of efflux. The addition of glucosamine at 9 h after exposure to IL-1--when H+-ATPase activation is already apparent--was also able to abolish H+-ATPase activity, implying that hexosamines do not exert effects at the level of protein synthesis. Co-incubation with the glucose transport inhibitor phloretin elicited similar effects to the hexosamines, suggesting that modulation of adenosine triphosphate levels may underlie their effects on H+-ATPase function. The omega-3 fish oil linolenic acid but not the omega-6 fish oil linoleic acid reduced H+-ATPase activity to levels seen in IL-1-untreated cells, although total efflux remained elevated, as a result of an enhanced H+ leak. These observations support a model whereby IL-1 stimulates an H+-ATPase-dependent system, possibly involved in aggrecanase activation, which appears to be one of the target mechanisms interrupted by dietary supplements reported to have symptom-modifying effects on osteoarthritis.

Original publication

DOI

10.1007/s00424-007-0425-x

Type

Journal article

Journal

Pflugers Arch

Publication Date

06/2008

Volume

456

Pages

501 - 506

Keywords

4-Chloro-7-nitrobenzofurazan, Amiloride, Animals, Cartilage, Articular, Cattle, Cells, Cultured, Chondrocytes, Dietary Supplements, Enzyme Inhibitors, Fatty Acids, Omega-3, Fatty Acids, Omega-6, Glucosamine, Hexosamines, Hydrogen-Ion Concentration, Interleukin-1alpha, Linoleic Acid, Proton-Translocating ATPases, Sodium-Hydrogen Exchangers, Spectrometry, Fluorescence, alpha-Linolenic Acid