Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neuroblasts generated in the adult subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB). Previous work uncovered motility ranging from straight to complex, but it was unclear if directional changes were stochastic or exhibited stereotypical patterns. Here, we provide the first in-depth two-photon time-lapse microscopy study of morphological and dynamic features that accompany turning and direction reversals in the RMS. We identified three specific kinds of turning (30-90 degrees): bending of the leading process proximal to the cell body (P-bending 47% of cases), bending of the distal leading process (D-bending 30%) or branching of the leading process or lamellipodium (23%). Bending and branching angles were remarkably constrained and were significantly different from one another. Cells reversed direction (> 90 degrees) through D-bendings (54%), branching (11%) or de novo growth of processes from the soma (23%), but not P-bending. Direction reversal was often composed of several iterations of D-bending or branching as opposed to novel modalities. Individual neuroblasts could turn or change direction in multiple patterns suggesting that the patterns are not specific for different lineages. These findings show that neuroblasts in the RMS use a limited number of distinct and constrained modalities to turn or reverse direction.

Original publication




Journal article


Cell Adh Migr

Publication Date





83 - 95


Animals, Brain, Cell Movement, Cerebral Ventricles, Female, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neural Stem Cells, Neurogenesis, Neurons, Olfactory Bulb, Signal Transduction