Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Friedreich's ataxia (FA) is the most common recessive ataxia, affecting 1-2 in 50,000 Caucasians, and there is currently no effective cure or treatment. FA results from a deficiency of the mitochondrial protein frataxin brought about by a repeat expansion in intron 1 of the FRDA gene. The main areas affected are the central nervous system (particularly the spinocerebellar system) and cardiac tissue. Therapies aimed at alleviating the neurological degeneration have proved unsuccessful to date. Here, we describe the construction and delivery of high capacity herpes simplex virus type 1 (HSV-1) amplicon vectors expressing the entire 80 kb FRDA genomic locus, driven by the endogenous FRDA promoter and including all introns and flanking regulatory sequences within a 135 kb genomic DNA insert. FA patient primary fibroblasts deficient in frataxin protein and exhibiting sensitivity to oxidative stress were transduced at high efficiency by FRDA genomic locus vectors. Following vector transduction, expression of FRDA protein by immunofluorescence was shown. Finally, functional complementation studies demonstrated restoration of the wild-type cellular phenotype in response to oxidative stress in transduced FA patient cells. These results suggest the potential of the infectious bacterial artificial chromosome-FRDA vectors for gene therapy of FA.

Original publication




Journal article


Mol Ther

Publication Date





248 - 254


Animals, Cell Survival, Cells, Cultured, Chromosomes, Artificial, Bacterial, Fibroblasts, Friedreich Ataxia, Genetic Therapy, Genetic Vectors, Herpesvirus 1, Human, Humans, Iron-Binding Proteins, Mice, Models, Genetic, Molecular Weight, Oxidative Stress