Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Modulation of striatal dopamine (DA) neurotransmission plays a fundamental role in the reinforcing and ultimately addictive effects of nicotine. Nicotine, by desensitizing beta2 subunit-containing (beta2*) nicotinic acetylcholine receptors (nAChRs) on striatal DA axons, significantly enhances how DA is released by reward-related burst activity compared to nonreward-related tonic activity. This action provides a synaptic mechanism for nicotine to facilitate the DA-dependent reinforcement. The subfamily of beta2*-nAChRs responsible for these potent synaptic effects could offer a molecular target for therapeutic strategies in nicotine addiction. We explored the role of alpha6beta2*-nAChRs in the nucleus accumbens (NAc) and caudate-putamen (CPu) by observing action potential-dependent DA release from synapses in real-time using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in mouse striatal slices. The alpha6-specific antagonist alpha-conotoxin-MII suppressed DA release evoked by single and low-frequency action potentials and concurrently enhanced release by high-frequency bursts in a manner similar to the beta2*-selective antagonist dihydro-beta-erythroidine (DHbetaE) in NAc, but less so in CPu. The greater role for alpha6*-nAChRs in NAc was not due to any confounding regional difference in ACh tone since elevated ACh levels (after the acetylcholinesterase inhibitor ambenonium) had similar outcomes in NAc and CPu. Rather, there appear to be underlying differences in nAChR subtype function in NAc and CPu. In summary, we reveal that alpha6beta2*-nAChRs dominate the effects of nicotine on DA release in NAc, whereas in CPu their role is minor alongside other beta2*-nAChRs (eg alpha4*), These data offer new insights to suggest striatal alpha6*-nAChRs as a molecular target for a therapeutic strategy for nicotine addiction.

Original publication

DOI

10.1038/sj.npp.1301617

Type

Journal article

Journal

Neuropsychopharmacology

Publication Date

08/2008

Volume

33

Pages

2158 - 2166

Keywords

Action Potentials, Analysis of Variance, Animals, Conotoxins, Dihydro-beta-Erythroidine, Dopamine, Dose-Response Relationship, Radiation, Drug Interactions, Electric Stimulation, In Vitro Techniques, Mice, Mice, Inbred C57BL, Neostriatum, Nicotine, Nicotinic Agonists, Nicotinic Antagonists, Nucleus Accumbens, Receptors, Nicotinic