The ligand-sensitive gate of a potassium channel lies close to the selectivity filter.
Proks P., Antcliff JF., Ashcroft FM.
Potassium channels selectively conduct K(+) ions across cell membranes and have key roles in cell excitability. Their opening and closing can be spontaneous or controlled by membrane voltage or ligand binding. We used Ba(2+) as a probe to determine the location of the ligand-sensitive gate in an inwardly rectifying K(+) channel (Kir6.2). To a K(+) channel, Ba(2+) and K(+) are of similar sizes, but Ba(2+) blocks the pore by binding within the selectivity filter. We found that internal Ba(2+) could still access its binding site when the channel was shut, which indicates that the ligand-sensitive gate lies above the Ba(2+)-block site, and thus within or above the selectivity filter. This is in marked contrast to the voltage-dependent gate of K(V) channels, which is located at the intracellular mouth of the pore.