Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The early development of the uncrossed tectobulbar and the crossed tectospinal tracts was studied. These two projections arise from the same structure, the mesencephalon, and develop during the same time period, but follow divergent courses. We have traced the pathways followed by these projections and identified the positions at which axon guidance decisions are made. The first neurons differentiate either side of the entire rostrocaudal extent of the dorsal midline and initiate axons that extend dorsoventrally across the surface of the tectum. At the ventral edge of the tectum these axons turn abruptly and fasciculate to form a caudal descending projection to the hindbrain. These axons extend to the caudal hindbrain and do not project to the periphery along cranial nerve roots. We therefore consider this tract to be the tectobular, rather than the mesencephalic division of the trigeminal. While the tectobulbar projection is still developing, a second wave of axons is initiated, which arises from only the rostral part of the tectum. These axons grow beyond the tectobulbar turn point and continue toward the ventral midline, where they cross the floor plate, before turning caudally at the lateral edge of the main descending hindbrain tract, the ventrolateral tract. We discuss the development of these tracts with reference to possible guidance cues mediating their course.

Original publication




Journal article


J Comp Neurol

Publication Date





501 - 510


Animals, Axons, Carbocyanines, Chick Embryo, Efferent Pathways, Fluorescent Dyes, Immunohistochemistry, Medulla Oblongata, Spinal Cord, Tectum Mesencephali