Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

We describe a model for the essential role of the kidney in long-term blood pressure regulation. We begin with a simple hydraulic model for the circulation, with a constant circulating volume. We show, with the help of a modification of Guyton's classic diagram, that cardiac output and mean arterial pressure are functions of circulating volume, peripheral resistance, venous and arterial compliances, and the cardiac Starling curve. This approach models only acute changes in a 'closed' circulation--one where there is no intake or excretion of fluid. The model is then adapted to 'open' the circulation, include a role for the kidney, and represent more chronic changes. Arterial pressure is then a sole function of renal behaviour and daily sodium (and liquid) intake, and becomes independent of other cardiovascular variables. As well as generating specific hypotheses for further investigation, these models can be used for the purpose of education in cardiovascular control and the treatment of hypertension.

Original publication




Journal article



Publication Date





1218 - 1228


Antihypertensive Agents, Blood Pressure, Blood Volume, Cardiac Output, Humans, Hypertension, Kidney, Models, Cardiovascular, Vasodilation