Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Spillover of dopamine (DA) from a release site into the extrasynaptic space is widely acknowledged. Indeed, spillover is necessary for signalling by DA because its receptors are predominantly extrasynaptic. Dopamine transporters (DATs) are often considered to participate in this process by 'gating' spillover. This article reviews the competition between DATs and diffusion in sculpting extracellular DA transients after quantal release, using a model based on data from the literature. Its conclusions challenge the view that DATs limit synaptic DA concentration and gate initial spillover from a release site; this is the work of diffusion. Rather, the greatest influence of DATs, or of their inhibition, is on the sphere of influence and lifetime of DA beyond a release site and, thus, on net extracellular concentration.

Original publication




Journal article


Trends Neurosci

Publication Date





270 - 277


Action Potentials, Animals, Corpus Striatum, Dopamine, Dopamine Plasma Membrane Transport Proteins, Extracellular Space, Membrane Glycoproteins, Membrane Transport Proteins, Models, Neurological, Nerve Tissue Proteins, Synapses