Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Horizontal disparity tuning for dynamic random-dot stereograms was investigated for a large population of neurons (n = 787) in V1 of the awake macaque. Disparity sensitivity was quantified using a measure of the discriminability of the maximum and minimum points on the disparity tuning curve. This measure and others revealed a continuum of selectivity rather than separate populations of disparity- and nondisparity-sensitive neurons. Although disparity sensitivity was correlated with the degree of direction tuning, it was not correlated with other significant neuronal properties, including preferred orientation and ocular dominance. In accordance with the Gabor energy model, tuning curves for horizontal disparity were adequately described by Gabor functions when the neuron's orientation preference was near vertical. For neurons with orientation preferences near to horizontal, a Gaussian function was more frequently sufficient. The spatial frequency of the Gabor function that described the disparity tuning was weakly correlated with measurements of the spatial frequency and orientation preference of the neuron for drifting sinusoidal gratings. Energy models make several predictions about the relationship between the response rates to monocular and binocular dot patterns. Few of the predictions were fulfilled exactly, although the observations can be reconciled with the energy model by simple modifications. These same modifications also provide an account of the observed continuum in strength of disparity selectivity. A weak correlation between the disparity sensitivity of simultaneously recorded single- and multiunit data were revealed as well as a weak tendency to show similar disparity preferences. This is compatible with a degree of local clustering for disparity sensitivity in V1, although this is much weaker than that reported in area MT.

Original publication




Journal article


J Neurophysiol

Publication Date





191 - 208


Animals, Macaca mulatta, Models, Neurological, Neurons, Normal Distribution, Orientation, Photic Stimulation, Predictive Value of Tests, Sensitivity and Specificity, Vision Disparity, Vision, Binocular, Visual Cortex, Wakefulness