Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Venovenous perfusion has been conducted in 12 healthy dogs to examine carbon dioxide (CO2) transfer and haemocompatibility over 9 h during total extracorporeal CO2 removal using a microporous polypropylene membrane lung with secondary flows in the blood channel. The anaesthetized animals were maintained normocapnic by including CO2 in the inspired gases. The CO2 removal was achieved using 0.631 m2 of active membrane, at a pulsatile Reynolds number of 50, and a CO2 extraction from blood of 17.8 ml (STP) dl-1. Gas exchange remained constant during the perfusions. Several aspects of our results suggest that the haemocompatibility of a system of the kind used here is at least as favourable as that of a steady flow device using a continuous silicone rubber membrane of equivalent gas transfer capability.

Original publication




Journal article


J Biomed Eng

Publication Date





74 - 81


Animals, Dogs, Extracorporeal Circulation, Hemodynamics, Hemoglobins, Leukocyte Count, Membranes, Artificial, Polyethylenes, Pulmonary Circulation, Pulmonary Gas Exchange