Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a multicomponent, nutrient-sensitive protein that is implicated in a wide range of major human diseases. mTORC1 responds to both growth factors and changes in local amino acid levels. Until recently, the intracellular amino acid-sensing mechanism that regulates mTORC1 had remained unexplored. However, studies in human cells in culture have demonstrated that in response to amino acid stimulation, mTOR (a conserved member of the PI3K superfamily) is shuttled to late endosomal and lysosomal compartments, where it binds the Ragulator-Rag complex and is assembled into active mTORC1. Members of the proton-assisted amino acid transporter (PAT/SLC36) family have been identified as critical components of the amino acid-sensing system that regulates mTORC1 present in endosomal and lysosomal membranes. These discoveries not only highlight several new potential drug targets that could impact selectively on mTORC1 activity in cancer cells, but also provide novel insights into the strategies used by such cells to outcompete their neighbors in growth factor- and nutrient-depleted conditions. In this review, recent mechanistic insights into how mTORC1 activity is controlled by amino acids and the potential for the selective targeting this regulatory input are discussed.


Journal article


Curr Opin Investig Drugs

Publication Date





1360 - 1367


Amino Acid Transport Systems, Amino Acids, Animals, Cytoplasm, Diptera, Humans, Intracellular Membranes, Lysosomes, Mechanistic Target of Rapamycin Complex 1, Multiprotein Complexes, Neoplasms, Nutritional Physiological Phenomena, Protein Binding, Proteins, Signal Transduction, Sirolimus, TOR Serine-Threonine Kinases