Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In order to pinpoint the location of a sound source, we make use of a variety of spatial cues that arise from the direction-dependent manner in which sounds interact with the head, torso and external ears. Accurate sound localization relies on the neural discrimination of tiny differences in the values of these cues and requires that the brain circuits involved be calibrated to the cues experienced by each individual. There is growing evidence that the capacity for recalibrating auditory localization continues well into adult life. Many details of how the brain represents auditory space and of how those representations are shaped by learning and experience remain elusive. However, it is becoming increasingly clear that the task of processing auditory spatial information is distributed over different regions of the brain, some working hierarchically, others independently and in parallel, and each apparently using different strategies for encoding sound source location.

Original publication




Journal article


Trends Cogn Sci

Publication Date





261 - 270