Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In humans, 8 h of isocapnic hypoxia causes a progressive rise in ventilation associated with increases in the acute ventilatory responses to hypoxia (AHVR) and hypercapnia (AHCVR). To determine whether 8 h of hyperoxia causes the converse of these effects, three 8-h protocols were compared in 14 subjects: 1) poikilocapnic hyperoxia, with end-tidal PO(2) (PET(O(2))) = 300 Torr and end-tidal PCO(2) (PET(CO(2))) uncontrolled; 2) isocapnic hyperoxia, with PET(O(2)) = 300 Torr and PET(CO(2)) maintained at the subject's normal air-breathing level; and 3) control. Ventilation was measured hourly. AHVR and AHCVR were determined before and 0.5 h after each exposure. During isocapnic hyperoxia, after an initial increase, ventilation progressively declined (P < 0.01, ANOVA). After exposure to hyperoxia, 1) AHVR declined (P < 0.05); 2) ventilation at fixed PET(CO(2)) decreased (P < 0.05); and 3) air-breathing PET(CO(2)) increased (P < 0.05); but 4) no significant changes in AHCVR or intercept were demonstrated. In conclusion, 8 h of hyperoxia have some effects opposite to those found with 8 h of hypoxia, indicating that there may be some "acclimatization to hypoxia" at normal sea-level values of PO(2).

Original publication




Journal article


J Appl Physiol (1985)

Publication Date





655 - 662


Adolescent, Adult, Algorithms, Blood Gas Analysis, Carbon Dioxide, Chemoreceptor Cells, Female, Humans, Hydrogen-Ion Concentration, Hyperoxia, Male, Middle Aged, Models, Biological, Oxygen, Respiratory Mechanics